Effects of the long-term phytomanagement of Cu mine-soils on microbial diversity and soil quality

Petra Susan Kidd, A. Lanzén, C. Trasar-Cepeda, B. Rodríguez-Garrido, C. Monterroso, Á. Prieto-Fernández, V. Álvarez-López, M. Mench, I. Martín and C. Garbisu

Consejo Superior de Investigaciones Científicas (CSIC), Spain
NEIKER, Basque Institute of Agricultural Research and Development, Spain
UMR BIOGECO INRA 1202, Bordeaux University, France
PhytoSUDOE

Demonstrating improvements in soil biodiversity, functionality and ecosystem services of contaminated and degraded land under (phyto)management within the Interreg Sudoe region.

Project objectives:

• Establish a network of contaminated/degraded sites under phytomanagement within the Interreg Sudoe region
 - Maintaining medium- to long-term field sites
 - Implementing new sites
• Characterise and demonstrate enhancements in biodiversity, soil functionality and ecosystem services through the phytomanagement
PhytoSUDOE network of field sites

Industrial zones (wood treatment facility)
- Rhizoremediation
- Phytostabilization
- Phytoextraction

Urban / Peri-urban areas
- Phytostabilization
- Sustainable re-vegetation

Mining areas
- Phytostabilisation
- Phytoextraction
Touro Cu mine – (Galicia, NW Spain)

- Active from 1974 – 1988
- Now confined to extraction of material for road construction
- Mine tailings 550 ha
- Geological substrate is amphibolite, metal sulphides (pyrite, pyrrhotite, and chalcopyrite).
- Spolic Technosols (Episkeletic)
- Climate Atlantic (oceanic)
- Mean annual precipitation 1900 mm
- Mean annual temperature of 12.6°C.
Aided Phytostabilisation

Metal(loid)-excluding plants for the in-situ stabilisation of metal(loid)s in soils in combination with soil amendments.

- Established end of 2010
- FP7 Greenland project (Gentle remediation of trace element contaminated land)
- Tratamientos Ecológicos del Noroeste s.l. (TEN s.l.)
- SME company (established 2004)
- Recycling and valorisation of non-toxic waste products
- Organic amendments (based on organic residues and waste products)
RECOVERING CONTAMINATED SOILS THROUGH PHYTOMANAGEMENT IN SO

- Phytomanagement using short rotation coppice system (for biomass production) and different organic amendments

Soil quality

- Plant nutrients
- Organic matter
- Physical properties
- Reduce Cu phytotoxicity
- Microbial diversity

Ecosystem services

- Carbon sequestration
- Nutrient cycling
- Habitat and gene pool
- Water storage and purification
- Biomass production
Mine tailings soil properties before implementing phytostabilisation trials (Time=0)

<table>
<thead>
<tr>
<th>Untreated soil</th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>3.1</td>
<td>2.7 – 3.6</td>
</tr>
<tr>
<td>%C</td>
<td>0.60</td>
<td>0.10 – 1.08</td>
</tr>
<tr>
<td>%N</td>
<td>0.10</td>
<td>0.08 – 0.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Texture</th>
<th>Sandy loam</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEC (cmol(+)/kg)</td>
<td>21.4</td>
</tr>
<tr>
<td>Exc. Al (cmol(+)/kg)</td>
<td>8.0</td>
</tr>
<tr>
<td>Exc. H (cmol(+)/kg)</td>
<td>9.4</td>
</tr>
<tr>
<td>P olsen (mg/kg)</td>
<td>2.5</td>
</tr>
<tr>
<td>Cu</td>
<td>598.0</td>
</tr>
<tr>
<td>Mn</td>
<td>823.0</td>
</tr>
<tr>
<td>Ni</td>
<td>43.0</td>
</tr>
<tr>
<td>Cr</td>
<td>96.0</td>
</tr>
</tbody>
</table>

• Sulphide oxidation: hyperacidic, hyperoxidising soils/waters
• High [metal sulphates], PTE.
Field plot design

3 experimental blocks - 500 m²

- PC: amended with compost
- PT1: waste mixture 1
- PT2: waste mixture 2

- Sub-plots 5 x 5m
- Spacing 1 m between sub-plots; 4 m between blocks
Soil amendments

PC: composted sewage sludges, pine bark chips

Waste mixtures (PT1 and PT2):

- Sewage sludge (Vigo)
- Sewage sludge (Vilagarcia)
- Paper sludge
- Sewage sludge (CaO stabilised)
- Biomass ashes (paper mill)
- Sand (quarry residues)

Less durable effect?

PT1
- Fe oxyhydroxides (ferrihydrate type)

PT2
- Al slag

- Stabilise organic material (organo-mineral complexes)
- Different reactive surfaces for Cu immobilisation
Plant species

Salix viminalis

Agrostis capillaris cv. Highland

3 replicate sub-plots per species and per amendment
Progress

Incorporation amendment

Plantation

Salix - 2017

Agrostis - 2017

2011 2012
Plant-microbial-soil system

Soil physico-chemical properties

- General properties: pH, texture, CEC, C, N, pseudo-total [metal], organo- and Fe/Al (hydro)oxides
- Metal availability: H$_2$O-, NH$_4$NO$_3$-extractable [metal], BCR fractionation
- Nutrient availability: Available P (olsens), water-extract: DOC, TN, anions (NO$_3^-$, NH$_4^+$, K$^+$, Ca$^{2+}$, Mg$^{2+}$)

Soil biological properties

- Structural diversity (Bacteria, Archaea, Fungi)
- Functional diversity (enzyme activities, respiration, Biolog Ecoplate); NGS shotgun

Plant growth

- Biomass production
- Nutrition, metal accumulation
Plant-microbial-soil system

Soil physico-chemical properties

General properties

Metal availability

Nutrient availability

Soil physico-chemical properties

Structural diversity (Bacteria, Archaea, Fungi)

Functional diversity (enzyme activities, respiration, Biolog Ecoplate); NGS shotgun

Plant-microbial-soil system

Monitoring T=0, 1 yr, 2 yr, 3 yr, 6 yr

PHYTOMANAGED MINE-SOIL
- Different amendments (PC, PT1, PT2)
- Different plant covers (Salix, Agrostis)

1-3 years general amendment effect no plant species effect

Soil biological properties (microbial diversity and activity)

- Untreated soils (UNT)

NON-CONTAMINATED SOIL
- Reference soil (Oak forest, similar geological substrate (amphibolite))
Improvements in soil fertility

RECOVERING CONTAMINATED SOILS THROUGH PHYTOMANAGEMENT IN SOUTHWEST EUROPE

- PT1/PT2 > PC
- Durable pH effect
- PC UNP < pH
- 6 yrs: >pH under plant cover
Improvements in soil fertility

CEC (cmol_c kg^{-1})

1 YEAR

3 YEARS

6 YEARS

PC

PT1

PT2

Reference

Untreated

Unplanted

Salix

Agrostis

H

Al

Ca

K

Mg

El proyecto PhytoSUDOE (SOE1/P5/E0189) está financiado por el Fondo Europeo de Desarrollo Regional (Comisión Europea) a través del V programa Interreg Sudoe.
Improvements in soil fertility

Total C (%)

- Same trends observed in total N
Improvements in soil fertility

RECOVERING CONTAMINATED SOILS THROUGH PHYTOMANAGEMENT IN SOUTHWEST EUROPE

P Olsen (mg kg⁻¹)
Improvements in soil fertility

Water-extractable K (mg L⁻¹)

Water-extractable NO₃⁻ (mg L⁻¹)
Reduction in Cu availability

Immobilization

NH₄NO₃-extractable Cu

Cu-Fe/Al amor. oxides
Organo-Cu
Cu labile

Co bl
PT1/2-amended blocks: Cu associated with amorphous Fe/Al oxides
C stabilization processes

- DOC > under plant cover
- Reactive Fe phases present in all amended soils (in line with geology)
- Important phase of organo Al complexes in PT2
Improvements in soil microbial activity

- Community level physiological profiling (Biolog Ecoplates)
- AWCD> phytomanaged soils
- AWCD and C substrate use >under plant cover

RECOVERING CONTAMINATED SOILS THROUGH PHYTOMANAGEMENT IN SOUTHWEST EUROPE

- C substrate usage compared to UNT

![Graph showing comparisons between different conditions](image-url)
Improvements in soil microbial activity

- Catalase / Dehydrogenase activities
- C, N, P, S cycles
- T=0, almost undetectable
- Increase after addition of compost
- Plant-induced effect
- Higher activities under Salix

Dehydrogenase (μmol INTF g⁻¹ h⁻¹)

Invertase (μmol glucose g⁻¹ h⁻¹)
Changes in soil microbial diversity (NGS sequencing illumina)

- Assignation of sequences to phyla
- Dominant phyla: Proteobacteria, Acidobacteria, Actinobacteria
- Increase relative abundance of bacteroidetes PC/PT1
- Increase halanaerobiales
Family level

PHYТОMANAGEMENT IN SOUTHWEST EUROPE

Taxa
- Nitrosonomadaceae
- Cytophagaceae
- Planctomycetaceae
- Flavobacteriaceae
- Chitinophagaceae
- Xanthomonadales_Incertae_Sedis
- Blastocatellaceae
- Xanthomonadaceae
- Oxalobacteraceae
- Gemmatimonadaceae
- Hyphomicrobiaceae
- Comamonadaceae
- Sphingomonadaceae
- Rhodospirillaceae
- Bradyrhizobiaceae
- Xanthobacteraceae
- Haliangiaceae
- Acidobacteriaceae
- env.OPS.17
- H16
- Tepidisphaeraceae
- Nitrospiraceae
- Nocardoidaceae
- Hyphomonaclaeaceae
- Caulobacteraceae
- Opitutaceae
- Sphingobacteriaceae
- Pseudomonadaceae
- Anaerolineaceae
- Micrococaceae
- Bilrii41
- Rhizobiales_Incertae_Sedis
- Elev.16S.1332
- Chthoniobacteriaceae
- Micromonosporaceae
- Others
Non-metric multidimensional scaling (NMDS) ordination plot:

- Separation of plant species/treatments

Shannon diversity > under plant cover

$H, p = 0.028$

Unplanted (UNP)