Artículo en Ecological Engineering

Artículo en Ecological Engineering

Título
Phytomanagement with grassy species, compost and dolomitic limestone rehabilitates a meadow at a wood preservation site

Datos de la publicación
Aritz Burges, Nad`ege Oustriere, María Galende, Lilian Marchand, Clemence M. Bes,
Eric Paidjan, Markus Puschenreiter, Jose María Becerril, Michel Mench
Ecological Engineering 160 (2021) 106132

Descarga

Resumen (en inglés)
Brownfield surface is expanding in Europe, but as often abandoned or underused, these areas become refuge for microbial, faunal and floral biodiversity. However, brownfield sites are generally contaminated, likely posing severe environmental risks. At a former wood preservation site contaminated with Cu, we evaluated the efficiency of compost and dolomitic limestone incorporation into the soil, followed by revegetation with Cu-tolerant grassy species, as a phytomanagement option to increase vegetation cover and plant diversity while reducing pollutant linkages. 7 years of phytomanagement enhanced natural revegetation through the improvement of soil physicochemical properties, particularly with compost-based amendments. The compost incorporation increased soil Cu solubility; however, no increment in Cu availability and a reduction in Cu-induced phytotoxicity were observed with the compost. The improved soil nutrient availability and the soil phytotoxicity mitigation in compost-amended soils facilitated over the 7 years the growth of beneficial plant colonists, including leguminous species, which can potentially promote essential soil functions. Soil treatments did not affect Cu uptake and translocation by plants and shoot Cu levels indicated no risk for the food chain. Overall, a long-term phytomanagement combining an initial amendment of compost and dolomitic limestone with the cultivation of Cu-tolerant grassy populations can ameliorate such Cu-contaminated soils, by mitigating risks induced by Cu excess, ultimately allowing the development of a meadow that can provide ecological and economic benefits in terms of ecosystem services.